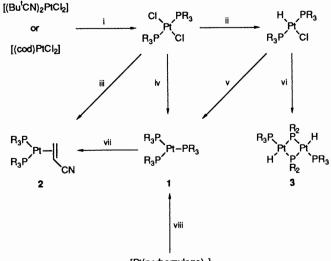
Platinum(0)-catalysed Hydrophosphination of Acrylonitrile

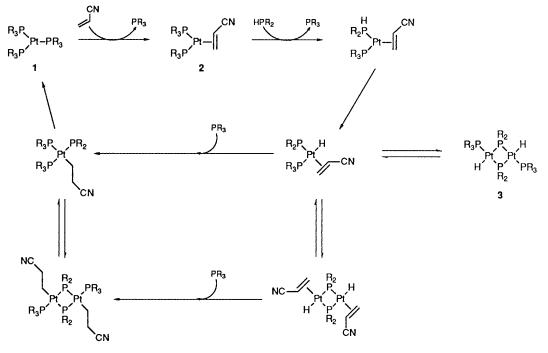

Paul G. Pringle* and Martin B. Smith

School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK

The tris(cyanoethyl)phosphine complex $[Pt{P(CH_2CH_2CN)_3}]$ catalyses the addition of PH₃ or PH(CH₂CH₂CN)₂ to CH₂=CHCN to give P(CH₂CH₂CN)₃.

Metal-phosphines catalyse many HX additions to alkenes including hydrogenation,^{1,2} hydroformylation,³ hydrosilylation⁴ and more recently, hydroamination.⁵ We now report the first example of a hydrophosphination of an alkene catalysed by a metal complex.

Tris(cyanoethyl)phosphine is an air-stable, white solid which finds use in the photographic industry⁶ and has been extensively investigated as a ligand.⁷ We have recently shown⁸ the PH₃ addition to H₂C=O to give P(CH₂OH)₃ is catalysed by a platinum(0) complex of P(CH₂OH)₃ and we therefore reasoned that platinum(0) complexes of P(CH₂CH₂CN)₃ may catalyse the addition of PH₃ to CH₂=CHCN. Platinum(0) complexes of P(CH₂CH₂CN)₃ have not been reported so the routes shown in Scheme 1 have been developed for the synthesis of [Pt{P(CH₂CH₂CN)₃}] **1**. The three-coordination of the platinum(0) in complex **1** is deduced from its ¹⁹⁵Pt{¹H} NMR spectrum, which is a 1:3:3:1 quartet, and has been confirmed by elemental analysis, and ¹H, ¹³C{¹H}, and ³¹P{¹H} NMR spectroscopy.[†] The ³¹P{¹H} NMR spectrum of a (CD₃)₂SO of complex **1** containing an excess of $P(CH_2CH_2CN)_3$ (10 equiv.) showed slightly broadened singlets for the two components, indicating that complex 1 has surprisingly little tendency to form the four-coordinate


[Pt(norbornylene)3]

Scheme 1 Reagents and conditions ($R = CH_2CH_2CN$): i, 2 equiv. PR_3 in CH_2Cl_2 ; ii, NaBH₄ in MeCN; iii, CH_2 =CHCN in MeCN followed by NaBH₄; iv, 1 equiv. of PR₃ in MeCN followed by NaBH₄; v, 1 equiv. of PR₃ and Et₃N in Me₂SO; vi, 1 equiv. of PH(CH₂CH₂CN)₂ and Et₃N in MeCN; vii, 1 equiv. of CH₂=CHCN in Me₂SO; viii, 3 equiv. of PR₃ in acetone-toluene (cod = cycloccta-1,5-diene)

[†] Selected NMR spectroscopic data: all spectra were recorded in $(CD_3)_2SO$ (³¹P and ¹⁹⁵Pt chemical shifts are to high frequency of 85% H₃PO₄ and Ξ 21.4 MHz respectively). 1: $\delta(P)$ 39.9, ¹J(PtP) 4217 Hz; $\delta(Pt)$ + 15.8 (quartet).

^{2:} $\delta(P_A)$ 18.9, ¹J(PtP_A) 3801 Hz, $\delta(P_B)$ 15.6, ¹J(PtP_B) 3327 Hz, J(PP) 44 Hz; $\delta(Pt) - 550$ (dd).

³: $\delta(PR_3)$ 28.2 (m), ¹*J*(PtP) 2366 Hz, $\delta(\mu$ -PR₂) – 160.9 (m), ¹*J*(PtP) 1874 Hz, *J*(PP) 288 Hz; $\delta(H)$ –4.80 (m), ¹*J*(PtH) 948 Hz, *J*(P_{trans}H) 146 Hz.

Scheme 2 Suggested mechanism for the hydrophosphination of CH2=CHCN

complex $[Pt{P(CH_2CH_2CN)_3}_4]$ and further, that phosphine exchange at 1, though occurring, is not rapid on the NMR timescale.

When PH₃ was bubbled through an acetonitrile solution of acrylonitrile for 6 h, no reaction was observed by ³¹P{¹H} NMR spectroscopy but, under similar conditions, addition of [Pt{P(CH₂CH₂CN)₃] led to the formation of the phosphines PH_n(CH₂CH₂CN)_{3,n} (n = 0–2). There are three parallel reactions taking place in the conversion of PH₃ to P(CH₂CHCN)₃ (eqn. 1–3) making further analysis of this system very complex. We have therefore concentrated on the final step: the conversion of PH(CH₂CH₂CN)₂ to P(CH₂CH₂CN)₃ (eqn. 3). After 8 h, there is no observed reaction between PH(CH₂CH₂CN)₂ and CH₂=CHCN but under similar conditions,‡ upon addition of the platinum complex 1, this reaction proceeds smoothly to completion within 1 h.

 $PH_3 + CH_2 = CHCN \rightarrow PH_2(CH_2CH_2CN)$ (1)

$$PH_2(CH_2CH_2CN) + CH_2 = CHCN \rightarrow PH(CH_2CH_2CN)_2 \quad (2)$$

$$PH(CH_2CH_2CN)_2 + CH_2=CHCN \rightarrow P(CH_2CH_2CN)_3 \qquad (3)$$

A mechanism for the hydrophosphination reaction is suggested in Scheme 2. The first step in the mechanism is supported by the observation that treatment of $[Pt{P(CH_2CH_2CN)_3}]$ with CH₂=CHCN gives $[Pt(\eta^2-CH_2=CHCN){P(CH_2CH_2CN)_3}]$ 2 quantitatively (see Scheme 1). Upon addition of 3 equivalents of $P(CH_2CH_2CN)_3$ to 2 the AB pattern of its ³¹P{¹H} NMR spectrum is broadened but essentially no displacement of the alkene is observed indicating that the equilibrium between 1 and 2 lies greatly in favour of 2; this may account for the observation that whereas normally metal-phosphine catalysed additions to alkenes are suppressed by the addition of phosphine ligand, the hydrophosphination reaction reported here is not slowed upon addition of even 50 equivalents of $P(CH_2CH_2CN)_3$. Subsequent steps in the mechanism have much in common with the mechanism proposed for catalytic hydrosilylation⁴ by platinum-phosphines. Binuclear μ -phosphido complexes are possible intermediates since we have found that the binuclear complex **3**, which can be made independently (see Scheme 1), is also a catalyst precursor for the hydrophosphination of CH_2 =CHCN (eqn. 3). Clearly further study of the mechanism is required and an investigation of the generality of the hydrophosphination reaction is presently underway.

We thank the SERC and Albright and Wilson for support and Johnson-Matthey plc for the generous loan of platinum salts.

Received, 27th September 1990; Com. 0/04375C

References

- 1 B. R. James, *Homogeneous Hydrogenation*, Wiley, New York, 1973.
- 2 Homogeneous Catalysis by Metal Phosphine Complexes, ed. L. H. Pignolet, Plenum Press, New York, 1983.
- 3 B. Cornils in *New Syntheses with Carbon Monoxide*, ed. J. Falbe, Springer-Verlag, Berlin, 1980.
- 4 M. Green, J. L. Spencer, F. G. A. Stone and C. A. Tsipis, J. Chem. Soc., Dalton Trans., 1977, 1519.
- 5 A. L. Casalnuovo, J. C. Calabrese and D. Milstein, J. Am. Chem. Soc., 1988, **110**, 6738.
- 6 BP 1 430 998 (1976) to Ciba Geigy (Chem. Abstr., 1976, 85, 114 752).
- 7 M. S. Holt and J. H. Nelson, *Inorg. Chem.*, 1986, 25, 1316 and references therein.
- 8 K. N. Harrison, P. A. T. Hoye, A. G. Orpen, P. G. Pringle and M. B. Smith, J. Chem. Soc., Chem. Commun., 1989, 1096.

[‡] Reaction conditions: A mixture of $PH(CH_2CH_2CN)_2$ (0.48 g, 3.42 mmol), $CH_2 = CHCN$ (2.25 cm³, 3.42 mmol) and complex 1 (0.10 g, 0.13 mmol) in MeCN (10 cm³) was stirred at +20 °C.